投稿指南
来稿应自觉遵守国家有关著作权法律法规,不得侵犯他人版权或其他权利,如果出现问题作者文责自负,而且本刊将依法追究侵权行为给本刊造成的损失责任。本刊对录用稿有修改、删节权。经本刊通知进行修改的稿件或被采用的稿件,作者必须保证本刊的独立发表权。 一、投稿方式: 1、 请从 我刊官网 直接投稿 。 2、 请 从我编辑部编辑的推广链接进入我刊投审稿系统进行投稿。 二、稿件著作权: 1、 投稿人保证其向我刊所投之作品是其本人或与他人合作创作之成果,或对所投作品拥有合法的著作权,无第三人对其作品提出可成立之权利主张。 2、 投稿人保证向我刊所投之稿件,尚未在任何媒体上发表。 3、 投稿人保证其作品不含有违反宪法、法律及损害社会公共利益之内容。 4、 投稿人向我刊所投之作品不得同时向第三方投送,即不允许一稿多投。 5、 投稿人授予我刊享有作品专有使用权的方式包括但不限于:通过网络向公众传播、复制、摘编、表演、播放、展览、发行、摄制电影、电视、录像制品、录制录音制品、制作数字化制品、改编、翻译、注释、编辑,以及出版、许可其他媒体、网站及单位转载、摘编、播放、录制、翻译、注释、编辑、改编、摄制。 6、 第5条所述之网络是指通过我刊官网。 7、 投稿人委托我刊声明,未经我方许可,任何网站、媒体、组织不得转载、摘编其作品。

农业基础科学论文_基于U-Net的葡萄种植区遥感

来源:遥感学报 【在线投稿】 栏目:期刊导读 时间:2022-01-26
作者:网站采编
关键词:
摘要:文章摘要:为提高葡萄种植区遥感识别精度,基于高分二号卫星遥感影像,对U-Net网络进行改进:从空间和通道维度自适应校准特征映射,以增强有意义的特征,抑制不相关的特征,提升

文章摘要:为提高葡萄种植区遥感识别精度,基于高分二号卫星遥感影像,对U-Net网络进行改进:从空间和通道维度自适应校准特征映射,以增强有意义的特征,抑制不相关的特征,提升地物边缘分割精度;减少下采样次数,使用混合扩张卷积代替常规卷积操作,以增大卷积核感受野,降低图像分辨率的损失,提高对不同尺寸地物的识别能力。实验结果表明,本文模型在测试集上的像素准确率、平均交并比和频权交并比分别为96.56%、93.11%、93.35%,比FCN-8s网络分别提高了5.17、9.57、9.17个百分点,比U-Net网络提高了2.39、4.59、4.39个百分点。此外,本文通过消融实验和特征可视化探究注意力模块和混合扩张卷积对该模型的影响。本文模型结构简单、参数量少,能够识别不同面积的葡萄种植区,边缘分割效果良好,为作物遥感识别精度的提升提供了一种有效途径。

文章关键词:

项目基金:《遥感学报》 网址: http://www.ygxbzz.cn/qikandaodu/2022/0126/1071.html



上一篇:矿业工程论文_煤矿区无人机影像采动地裂缝提取
下一篇:林业论文_LiDAR单木分割辅助的无人机影像树种

遥感学报投稿 | 遥感学报编辑部| 遥感学报版面费 | 遥感学报论文发表 | 遥感学报最新目录
Copyright © 2018 《遥感学报》杂志社 版权所有
投稿电话: 投稿邮箱: