投稿指南
来稿应自觉遵守国家有关著作权法律法规,不得侵犯他人版权或其他权利,如果出现问题作者文责自负,而且本刊将依法追究侵权行为给本刊造成的损失责任。本刊对录用稿有修改、删节权。经本刊通知进行修改的稿件或被采用的稿件,作者必须保证本刊的独立发表权。 一、投稿方式: 1、 请从 我刊官网 直接投稿 。 2、 请 从我编辑部编辑的推广链接进入我刊投审稿系统进行投稿。 二、稿件著作权: 1、 投稿人保证其向我刊所投之作品是其本人或与他人合作创作之成果,或对所投作品拥有合法的著作权,无第三人对其作品提出可成立之权利主张。 2、 投稿人保证向我刊所投之稿件,尚未在任何媒体上发表。 3、 投稿人保证其作品不含有违反宪法、法律及损害社会公共利益之内容。 4、 投稿人向我刊所投之作品不得同时向第三方投送,即不允许一稿多投。 5、 投稿人授予我刊享有作品专有使用权的方式包括但不限于:通过网络向公众传播、复制、摘编、表演、播放、展览、发行、摄制电影、电视、录像制品、录制录音制品、制作数字化制品、改编、翻译、注释、编辑,以及出版、许可其他媒体、网站及单位转载、摘编、播放、录制、翻译、注释、编辑、改编、摄制。 6、 第5条所述之网络是指通过我刊官网。 7、 投稿人委托我刊声明,未经我方许可,任何网站、媒体、组织不得转载、摘编其作品。

自然地理学和测绘学论文_SAR图像建筑物目标检

来源:遥感学报 【在线投稿】 栏目:期刊导读 时间:2022-01-18
作者:网站采编
关键词:
摘要:文章摘要:面对日益剧增的城市建筑物,合成孔径雷达(synthetic aperture radar,SAR)图像的建筑物检测作为SAR图像解译的一个分支逐渐成为一项重要的研究课题。本文对现有的研究方法进行

文章摘要:面对日益剧增的城市建筑物,合成孔径雷达(synthetic aperture radar,SAR)图像的建筑物检测作为SAR图像解译的一个分支逐渐成为一项重要的研究课题。本文对现有的研究方法进行了分类,从基于传统方法的建筑物检测和基于深度学习的建筑物检测两方面入手,对现有SAR图像的建筑物目标检测算法进行了梳理。简述了SAR图像的特点和SAR图像建筑物检测任务的整体流程,介绍了基于建模、纹理特征和机器学习的方法以及深度学习的目标检测方法。重点论述了当前基于候选区域和回归的主流检测方法。对各类方法的优势和局限性进行对比分析,总结了当前SAR图像建筑物检测技术的存在的主要问题和发展瓶颈,并给出相应建议。最后对该领域未来的研究方向进行了展望。

文章关键词:

论文分类号:P237;TN957.52

文章来源:《遥感学报》 网址: http://www.ygxbzz.cn/qikandaodu/2022/0118/1050.html



上一篇:农作物论文_多时相Sentinel-1影像反演玉溪典型
下一篇:工业通用技术及设备论文_红外遥感图像目标识别

遥感学报投稿 | 遥感学报编辑部| 遥感学报版面费 | 遥感学报论文发表 | 遥感学报最新目录
Copyright © 2018 《遥感学报》杂志社 版权所有
投稿电话: 投稿邮箱: