- · 《遥感学报》栏目设置[09/01]
- · 《遥感学报》数据库收录[09/01]
- · 《遥感学报》投稿方式[09/01]
- · 《遥感学报》征稿要求[09/01]
- · 《遥感学报》刊物宗旨[09/01]
来稿应自觉遵守国家有关著作权法律法规,不得侵犯他人版权或其他权利,如果出现问题作者文责自负,而且本刊将依法追究侵权行为给本刊造成的损失责任。本刊对录用稿有修改、删节权。经本刊通知进行修改的稿件或被采用的稿件,作者必须保证本刊的独立发表权。 一、投稿方式: 1、 请从 我刊官网 直接投稿 。 2、 请 从我编辑部编辑的推广链接进入我刊投审稿系统进行投稿。 二、稿件著作权: 1、 投稿人保证其向我刊所投之作品是其本人或与他人合作创作之成果,或对所投作品拥有合法的著作权,无第三人对其作品提出可成立之权利主张。 2、 投稿人保证向我刊所投之稿件,尚未在任何媒体上发表。 3、 投稿人保证其作品不含有违反宪法、法律及损害社会公共利益之内容。 4、 投稿人向我刊所投之作品不得同时向第三方投送,即不允许一稿多投。 5、 投稿人授予我刊享有作品专有使用权的方式包括但不限于:通过网络向公众传播、复制、摘编、表演、播放、展览、发行、摄制电影、电视、录像制品、录制录音制品、制作数字化制品、改编、翻译、注释、编辑,以及出版、许可其他媒体、网站及单位转载、摘编、播放、录制、翻译、注释、编辑、改编、摄制。 6、 第5条所述之网络是指通过我刊官网。 7、 投稿人委托我刊声明,未经我方许可,任何网站、媒体、组织不得转载、摘编其作品。
工业通用技术及设备论文_融合半监督学习的无监
作者:网站采编关键词:
摘要:文章摘要:自监督学习可以不依赖样本标签对遥感影像进行特征提取,但是特征分类仍然依赖有监督方法。为了克服有监督特征分类过程的不足,实现遥感影像特征的无监督自动分类,本
文章摘要:自监督学习可以不依赖样本标签对遥感影像进行特征提取,但是特征分类仍然依赖有监督方法。为了克服有监督特征分类过程的不足,实现遥感影像特征的无监督自动分类,本文提出了一种融合半监督学习的无监督语义聚类方法。首先,使用自监督学习提取遥感影像特征,抽象出图像包含的高层语义信息;然后,基于特征相似度寻找每个样本最相似的近邻,使用在线聚类将相似样本聚为一类,训练一个线性分类器;最后,根据聚类结果为高置信度样本生成伪标签,构造标注样本集,使用半监督方法对模型微调。在4个公开遥感影像场景分类数据集EuroSAT、GID、AID和NWPU-RESISC45上进行验证,分类精度分别达到了94.84%、63.55%、76.42%和86.24%。本文提出的方法结合了在线聚类和半监督学习的优点,缓解了已有方法存在的误差积累和样本利用不充分的问题,在完全不使用标注样本的情况下,充分利用自监督特征训练分类模型,对遥感影像进行场景分类,达到接近有监督学习的分类效果,具有良好的应用价值。
文章关键词:
论文分类号:TP751;TP181
文章来源:《遥感学报》 网址: http://www.ygxbzz.cn/qikandaodu/2022/0114/1048.html