投稿指南
来稿应自觉遵守国家有关著作权法律法规,不得侵犯他人版权或其他权利,如果出现问题作者文责自负,而且本刊将依法追究侵权行为给本刊造成的损失责任。本刊对录用稿有修改、删节权。经本刊通知进行修改的稿件或被采用的稿件,作者必须保证本刊的独立发表权。 一、投稿方式: 1、 请从 我刊官网 直接投稿 。 2、 请 从我编辑部编辑的推广链接进入我刊投审稿系统进行投稿。 二、稿件著作权: 1、 投稿人保证其向我刊所投之作品是其本人或与他人合作创作之成果,或对所投作品拥有合法的著作权,无第三人对其作品提出可成立之权利主张。 2、 投稿人保证向我刊所投之稿件,尚未在任何媒体上发表。 3、 投稿人保证其作品不含有违反宪法、法律及损害社会公共利益之内容。 4、 投稿人向我刊所投之作品不得同时向第三方投送,即不允许一稿多投。 5、 投稿人授予我刊享有作品专有使用权的方式包括但不限于:通过网络向公众传播、复制、摘编、表演、播放、展览、发行、摄制电影、电视、录像制品、录制录音制品、制作数字化制品、改编、翻译、注释、编辑,以及出版、许可其他媒体、网站及单位转载、摘编、播放、录制、翻译、注释、编辑、改编、摄制。 6、 第5条所述之网络是指通过我刊官网。 7、 投稿人委托我刊声明,未经我方许可,任何网站、媒体、组织不得转载、摘编其作品。

自然地理学和测绘学论文_基于Attention Gates

来源:遥感学报 【在线投稿】 栏目:期刊导读 时间:2022-01-13
作者:网站采编
关键词:
摘要:文章摘要:针对深度语义分割算法提取遥感影像建筑物时易产生建筑物边缘分割不明确、提取精度不高等问题,该文提出一种基于Attention Gates(AG)和R2U-Net的遥感影像建筑物提取方法(A

文章摘要:针对深度语义分割算法提取遥感影像建筑物时易产生建筑物边缘分割不明确、提取精度不高等问题,该文提出一种基于Attention Gates(AG)和R2U-Net的遥感影像建筑物提取方法(AGR2U-Net)。该方法将R2U-Net模型每一层输出的特征图与其相邻层的特征图输入至改进的AG模型中,得到与输入影像大小一致的特征图,以提高R2U-Net模型的多尺度泛化能力,从而增强该模型对建筑物特征的响应及灵敏度,最终提升遥感影像建筑物提取精度。利用WHU卫星影像数据集和WHU航空影像数据集,对该方法与U-Net、Improved U-Net、SegU-Net和R2U-Net方法进行对比实验验证,结果表明,该方法的交并比、像素准确率和召回率均最高,且提取的建筑物边缘更准确、内部信息更完整、误检和漏检情况更少。

文章关键词:

项目基金:《遥感学报》 网址: http://www.ygxbzz.cn/qikandaodu/2022/0113/1041.html



上一篇:工业通用技术及设备论文_高光谱遥感图像波段选
下一篇:环境科学与资源利用论文_基于遥感的鄱阳湖五河

遥感学报投稿 | 遥感学报编辑部| 遥感学报版面费 | 遥感学报论文发表 | 遥感学报最新目录
Copyright © 2018 《遥感学报》杂志社 版权所有
投稿电话: 投稿邮箱: