投稿指南
来稿应自觉遵守国家有关著作权法律法规,不得侵犯他人版权或其他权利,如果出现问题作者文责自负,而且本刊将依法追究侵权行为给本刊造成的损失责任。本刊对录用稿有修改、删节权。经本刊通知进行修改的稿件或被采用的稿件,作者必须保证本刊的独立发表权。 一、投稿方式: 1、 请从 我刊官网 直接投稿 。 2、 请 从我编辑部编辑的推广链接进入我刊投审稿系统进行投稿。 二、稿件著作权: 1、 投稿人保证其向我刊所投之作品是其本人或与他人合作创作之成果,或对所投作品拥有合法的著作权,无第三人对其作品提出可成立之权利主张。 2、 投稿人保证向我刊所投之稿件,尚未在任何媒体上发表。 3、 投稿人保证其作品不含有违反宪法、法律及损害社会公共利益之内容。 4、 投稿人向我刊所投之作品不得同时向第三方投送,即不允许一稿多投。 5、 投稿人授予我刊享有作品专有使用权的方式包括但不限于:通过网络向公众传播、复制、摘编、表演、播放、展览、发行、摄制电影、电视、录像制品、录制录音制品、制作数字化制品、改编、翻译、注释、编辑,以及出版、许可其他媒体、网站及单位转载、摘编、播放、录制、翻译、注释、编辑、改编、摄制。 6、 第5条所述之网络是指通过我刊官网。 7、 投稿人委托我刊声明,未经我方许可,任何网站、媒体、组织不得转载、摘编其作品。

工业通用技术及设备论文_基于残差收缩网络的遥

来源:遥感学报 【在线投稿】 栏目:期刊导读 时间:2021-11-18
作者:网站采编
关键词:
摘要:文章摘要:针对于遥感图像中背景复杂噪声多、小目标多且排布密集、目标尺度差异大等问题,本文提出了一种改进通道注意力与残差收缩网络的遥感图像目标检测算法。该算法借助卷积

文章摘要:针对于遥感图像中背景复杂噪声多、小目标多且排布密集、目标尺度差异大等问题,本文提出了一种改进通道注意力与残差收缩网络的遥感图像目标检测算法。该算法借助卷积神经网络,以YOLOV3模型作为基础网络,选择Mosaic图像增强的方式进行数据预处理,采用深度残差收缩模块重构了特征提取网络,并结合通道注意力机制与组合池化构建空间金字塔池化融合层,采用CIOU进行定位损失计算,最终实现遥感图像目标检测。实验结果表明:改进算法相比于原算法的总体mAP由89.2%提升至92.2%,获得了更好的性能表现。

文章关键词:

项目基金:《遥感学报》 网址: http://www.ygxbzz.cn/qikandaodu/2021/1118/920.html



上一篇:生物学论文_基于多源遥感的贵州草海国家级自然
下一篇:石油天然气工业论文_油气矿山越界开采遥感监测

遥感学报投稿 | 遥感学报编辑部| 遥感学报版面费 | 遥感学报论文发表 | 遥感学报最新目录
Copyright © 2018 《遥感学报》杂志社 版权所有
投稿电话: 投稿邮箱: