- · 《遥感学报》栏目设置[09/01]
- · 《遥感学报》数据库收录[09/01]
- · 《遥感学报》投稿方式[09/01]
- · 《遥感学报》征稿要求[09/01]
- · 《遥感学报》刊物宗旨[09/01]
来稿应自觉遵守国家有关著作权法律法规,不得侵犯他人版权或其他权利,如果出现问题作者文责自负,而且本刊将依法追究侵权行为给本刊造成的损失责任。本刊对录用稿有修改、删节权。经本刊通知进行修改的稿件或被采用的稿件,作者必须保证本刊的独立发表权。 一、投稿方式: 1、 请从 我刊官网 直接投稿 。 2、 请 从我编辑部编辑的推广链接进入我刊投审稿系统进行投稿。 二、稿件著作权: 1、 投稿人保证其向我刊所投之作品是其本人或与他人合作创作之成果,或对所投作品拥有合法的著作权,无第三人对其作品提出可成立之权利主张。 2、 投稿人保证向我刊所投之稿件,尚未在任何媒体上发表。 3、 投稿人保证其作品不含有违反宪法、法律及损害社会公共利益之内容。 4、 投稿人向我刊所投之作品不得同时向第三方投送,即不允许一稿多投。 5、 投稿人授予我刊享有作品专有使用权的方式包括但不限于:通过网络向公众传播、复制、摘编、表演、播放、展览、发行、摄制电影、电视、录像制品、录制录音制品、制作数字化制品、改编、翻译、注释、编辑,以及出版、许可其他媒体、网站及单位转载、摘编、播放、录制、翻译、注释、编辑、改编、摄制。 6、 第5条所述之网络是指通过我刊官网。 7、 投稿人委托我刊声明,未经我方许可,任何网站、媒体、组织不得转载、摘编其作品。
工业通用技术及设备论文_融合栈式自编码与CNN
作者:网站采编关键词:
摘要:文章摘要:在高光谱影像作物分类中,为了充分利用高光谱遥感影像完整的光谱信息,同时避免高维数据带来的Hughes现象。从栈式自编码网络的数据降维与CNN网络的分类优势出发,首先分
文章摘要:在高光谱影像作物分类中,为了充分利用高光谱遥感影像完整的光谱信息,同时避免高维数据带来的Hughes现象。从栈式自编码网络的数据降维与CNN网络的分类优势出发,首先分析了此种网络在训练过程中的共性,以自编码网络优化过程中分类器的选取作为切入点,构建了可用于高光谱影像分类的融合网络架构。相较于传统方法,本文方法仅通过一次监督训练,即可实现高光谱影像直接分类,简化了传统数据处理流程,而且具有更优的分类性能。在实验中,本文利用Pavia University与雄安地区两组典型的高光谱遥感影像数据集对本文方法进行了验证,实验结果表明,Pavia University数据集中,在仅选用10%的像素点作为训练集的情况下,本文方法的总体分类精度达到了98.73%,比传统方法提升了8%以上;在雄安数据集中,在仅选用1%的像素点作为训练集的情况下,本文方法的总体分类精度达到了98.04%,比传统方法提升了7%以上,证明了本文分析的正确性和所提方法有效性,也为小样本情况下的高光谱影像分类提供了一种新的研究思路。
文章关键词:
项目基金:《遥感学报》 网址: http://www.ygxbzz.cn/qikandaodu/2021/1028/869.html