- · 《遥感学报》栏目设置[09/01]
- · 《遥感学报》数据库收录[09/01]
- · 《遥感学报》投稿方式[09/01]
- · 《遥感学报》征稿要求[09/01]
- · 《遥感学报》刊物宗旨[09/01]
来稿应自觉遵守国家有关著作权法律法规,不得侵犯他人版权或其他权利,如果出现问题作者文责自负,而且本刊将依法追究侵权行为给本刊造成的损失责任。本刊对录用稿有修改、删节权。经本刊通知进行修改的稿件或被采用的稿件,作者必须保证本刊的独立发表权。 一、投稿方式: 1、 请从 我刊官网 直接投稿 。 2、 请 从我编辑部编辑的推广链接进入我刊投审稿系统进行投稿。 二、稿件著作权: 1、 投稿人保证其向我刊所投之作品是其本人或与他人合作创作之成果,或对所投作品拥有合法的著作权,无第三人对其作品提出可成立之权利主张。 2、 投稿人保证向我刊所投之稿件,尚未在任何媒体上发表。 3、 投稿人保证其作品不含有违反宪法、法律及损害社会公共利益之内容。 4、 投稿人向我刊所投之作品不得同时向第三方投送,即不允许一稿多投。 5、 投稿人授予我刊享有作品专有使用权的方式包括但不限于:通过网络向公众传播、复制、摘编、表演、播放、展览、发行、摄制电影、电视、录像制品、录制录音制品、制作数字化制品、改编、翻译、注释、编辑,以及出版、许可其他媒体、网站及单位转载、摘编、播放、录制、翻译、注释、编辑、改编、摄制。 6、 第5条所述之网络是指通过我刊官网。 7、 投稿人委托我刊声明,未经我方许可,任何网站、媒体、组织不得转载、摘编其作品。
船舶工业论文_增强感受野的轻量化合成孔径雷达
作者:网站采编关键词:
摘要:文章摘要:基于深度学习的合成孔径雷达(Synthetic Aperture Radar, SAR)船舶检测方法目前大多依赖于强大的图形处理器来实现良好的检测精度,却忽略了检测速度和算法的部署应用。针对
文章摘要:基于深度学习的合成孔径雷达(Synthetic Aperture Radar, SAR)船舶检测方法目前大多依赖于强大的图形处理器来实现良好的检测精度,却忽略了检测速度和算法的部署应用。针对上述问题,本文提出一种有效增强感受野的轻量化SAR船舶检测算法。首先,使用ShuffleNetV2作为主干特征提取网络,有利于减小计算参数量和模型大小;其次,引入改进型空间金字塔池化模块与空间注意力模块,有效扩大模型感受野,进一步挖掘船舶特征信息;然后,采用改进的路径聚合网络,自底向上传递更丰富的船舶定位特征,增加浅层位置信息和多尺度特征,进一步提高模型的特征提取能力;最后,使用SAR船舶数据集对本文算法进行验证,实验结果表明,模型大小为5.3 MB,平均检测精度可达94.7%,检测速度为46 FPS,同时满足了高精度、高实时性和易移植性。
文章关键词:
项目基金:《遥感学报》 网址: http://www.ygxbzz.cn/qikandaodu/2021/1001/819.html