投稿指南
来稿应自觉遵守国家有关著作权法律法规,不得侵犯他人版权或其他权利,如果出现问题作者文责自负,而且本刊将依法追究侵权行为给本刊造成的损失责任。本刊对录用稿有修改、删节权。经本刊通知进行修改的稿件或被采用的稿件,作者必须保证本刊的独立发表权。 一、投稿方式: 1、 请从 我刊官网 直接投稿 。 2、 请 从我编辑部编辑的推广链接进入我刊投审稿系统进行投稿。 二、稿件著作权: 1、 投稿人保证其向我刊所投之作品是其本人或与他人合作创作之成果,或对所投作品拥有合法的著作权,无第三人对其作品提出可成立之权利主张。 2、 投稿人保证向我刊所投之稿件,尚未在任何媒体上发表。 3、 投稿人保证其作品不含有违反宪法、法律及损害社会公共利益之内容。 4、 投稿人向我刊所投之作品不得同时向第三方投送,即不允许一稿多投。 5、 投稿人授予我刊享有作品专有使用权的方式包括但不限于:通过网络向公众传播、复制、摘编、表演、播放、展览、发行、摄制电影、电视、录像制品、录制录音制品、制作数字化制品、改编、翻译、注释、编辑,以及出版、许可其他媒体、网站及单位转载、摘编、播放、录制、翻译、注释、编辑、改编、摄制。 6、 第5条所述之网络是指通过我刊官网。 7、 投稿人委托我刊声明,未经我方许可,任何网站、媒体、组织不得转载、摘编其作品。

工业通用技术及设备论文_基于多尺度扩张卷积

来源:遥感学报 【在线投稿】 栏目:期刊导读 时间:2021-09-05
作者:网站采编
关键词:
摘要:文章摘要:城中村是我国快速城市化进程中的一个特殊产物,通常存在人口密集、建筑私自改造等问题开展城中村的识别和监测对城乡统筹规划以及精细化治理等具有重要意义。基于深度

文章摘要:城中村是我国快速城市化进程中的一个特殊产物,通常存在人口密集、建筑私自改造等问题开展城中村的识别和监测对城乡统筹规划以及精细化治理等具有重要意义。基于深度学习提出了一种新的城中村遥感识别模型,该模型包括一个多尺度扩张卷积模块和一个非局部特征提取模块,前者能够聚合多层级空间特征以适应城中村形状、尺度的变异性;后者用于提取全局语义特征以提高城中村的类间可分性。选取北京市二环与六环之间的区域作为研究区,试验结果表明本文模型取得了较好的识别效果,总体精度可达94.27%,Kappa系数为0.8839,且效果优于传统模型。本文研究表明,基于多尺度扩张卷积神经网络进行城中村遥感识别是可行且有效的,可为城乡统筹规划提供精确的城中村空间分布数据。

文章关键词:城中村,场景识别,扩张卷积,深度学习,

项目基金:国家重点研发计划项目(2018YFE0122700),国家自然科学基金项目(42001367),资源与环境信息系统国家重点实验室开放基金项目,《遥感学报》 网址: http://www.ygxbzz.cn/qikandaodu/2021/0905/792.html



上一篇: 环境科学与资源利用论文_基于聚类深度网络模
下一篇: 环境科学与资源利用论文_基于卫星遥感的合肥

遥感学报投稿 | 遥感学报编辑部| 遥感学报版面费 | 遥感学报论文发表 | 遥感学报最新目录
Copyright © 2018 《遥感学报》杂志社 版权所有
投稿电话: 投稿邮箱: