投稿指南
来稿应自觉遵守国家有关著作权法律法规,不得侵犯他人版权或其他权利,如果出现问题作者文责自负,而且本刊将依法追究侵权行为给本刊造成的损失责任。本刊对录用稿有修改、删节权。经本刊通知进行修改的稿件或被采用的稿件,作者必须保证本刊的独立发表权。 一、投稿方式: 1、 请从 我刊官网 直接投稿 。 2、 请 从我编辑部编辑的推广链接进入我刊投审稿系统进行投稿。 二、稿件著作权: 1、 投稿人保证其向我刊所投之作品是其本人或与他人合作创作之成果,或对所投作品拥有合法的著作权,无第三人对其作品提出可成立之权利主张。 2、 投稿人保证向我刊所投之稿件,尚未在任何媒体上发表。 3、 投稿人保证其作品不含有违反宪法、法律及损害社会公共利益之内容。 4、 投稿人向我刊所投之作品不得同时向第三方投送,即不允许一稿多投。 5、 投稿人授予我刊享有作品专有使用权的方式包括但不限于:通过网络向公众传播、复制、摘编、表演、播放、展览、发行、摄制电影、电视、录像制品、录制录音制品、制作数字化制品、改编、翻译、注释、编辑,以及出版、许可其他媒体、网站及单位转载、摘编、播放、录制、翻译、注释、编辑、改编、摄制。 6、 第5条所述之网络是指通过我刊官网。 7、 投稿人委托我刊声明,未经我方许可,任何网站、媒体、组织不得转载、摘编其作品。

面向对象与卷积神经网络模型的影像作物分类

来源:遥感学报 【在线投稿】 栏目:期刊导读 时间:2021-05-01
作者:网站采编
关键词:
摘要:GF-6 WFV影像是中国首颗带有红边波段的中高分辨率8波段多光谱卫星的遥感影像,对于其影像及红边波段对作物分类影响的研究利用亟待展开。本文结合面向对象和深度学习提出一种适用于
GF-6 WFV影像是中国首颗带有红边波段的中高分辨率8波段多光谱卫星的遥感影像,对于其影像及红边波段对作物分类影响的研究利用亟待展开。本文结合面向对象和深度学习提出一种适用于GF-6 WFV红边波段的卷积神经网络(RE-CNN)遥感影像作物分类方法。首先采用多尺度分割和ESP工具选择最佳分割参数完成影像分割,通过面向对象的CART决策树消除椒盐现象的同时提取植被区域,并转化为卷积神经网络的输入数据,最后基于Python和Numpy库构建的卷积神经网络模型(RE-CNN)用于影像作物分类及精度验证。有无红边波段的两组分类实验结果表明:在红边波段组,卷积神经网络(RE-CNN)作物分类识别取得了较好的效果,总体精度高达94.38%,相比无红边波段组分类精度提高了2.83%,验证了GF-6 WFV红边波段对作物分类的有效性。为GF-6 WFV红边波段影像用于作物的分类研究提供技术参考和借鉴价值。

文章来源:《遥感学报》 网址: http://www.ygxbzz.cn/qikandaodu/2021/0501/626.html



上一篇:遥感影像分类的瓦片边缘效应及消除方案
下一篇:基于与的杞麓湖流域土地利用变化分析

遥感学报投稿 | 遥感学报编辑部| 遥感学报版面费 | 遥感学报论文发表 | 遥感学报最新目录
Copyright © 2018 《遥感学报》杂志社 版权所有
投稿电话: 投稿邮箱: