投稿指南
来稿应自觉遵守国家有关著作权法律法规,不得侵犯他人版权或其他权利,如果出现问题作者文责自负,而且本刊将依法追究侵权行为给本刊造成的损失责任。本刊对录用稿有修改、删节权。经本刊通知进行修改的稿件或被采用的稿件,作者必须保证本刊的独立发表权。 一、投稿方式: 1、 请从 我刊官网 直接投稿 。 2、 请 从我编辑部编辑的推广链接进入我刊投审稿系统进行投稿。 二、稿件著作权: 1、 投稿人保证其向我刊所投之作品是其本人或与他人合作创作之成果,或对所投作品拥有合法的著作权,无第三人对其作品提出可成立之权利主张。 2、 投稿人保证向我刊所投之稿件,尚未在任何媒体上发表。 3、 投稿人保证其作品不含有违反宪法、法律及损害社会公共利益之内容。 4、 投稿人向我刊所投之作品不得同时向第三方投送,即不允许一稿多投。 5、 投稿人授予我刊享有作品专有使用权的方式包括但不限于:通过网络向公众传播、复制、摘编、表演、播放、展览、发行、摄制电影、电视、录像制品、录制录音制品、制作数字化制品、改编、翻译、注释、编辑,以及出版、许可其他媒体、网站及单位转载、摘编、播放、录制、翻译、注释、编辑、改编、摄制。 6、 第5条所述之网络是指通过我刊官网。 7、 投稿人委托我刊声明,未经我方许可,任何网站、媒体、组织不得转载、摘编其作品。

遥感影像分类的瓦片边缘效应及消除方案

来源:遥感学报 【在线投稿】 栏目:期刊导读 时间:2021-05-01
作者:网站采编
关键词:
摘要:应用卷积神经网络语义分割模型(Image Semantic Segmentation based on Convolutional Neural Network,CNN-ISS)进行遥感影像分类时,需将大幅影像分解为特定大小瓦片影像,并将其作为CNN-ISS处理对象,这一过程
应用卷积神经网络语义分割模型(Image Semantic Segmentation based on Convolutional Neural Network,CNN-ISS)进行遥感影像分类时,需将大幅影像分解为特定大小瓦片影像,并将其作为CNN-ISS处理对象,这一过程破坏了位于瓦片边缘处地物的完整几何及纹理特征,从而影响瓦片边缘处地物的识别效果,即瓦片边缘效应。该研究以DeepLab V3为CNN-ISS核心模型,对唐山农村地物进行语义分割,定量分析了分类结果的瓦片边缘效应,并提出了5个消除此效应的后处理方案。结果表明:像素分类精度与像素到瓦片边缘距离正相关,瓦片边缘处错误率最高达6.93%,中央处错误率最低为3.52%,存在瓦片边缘效应;采用该研究提出的瓦片边缘效应消除方案后,整幅影像的总精度(PixelAccuracy,PA)、均交并比(Mean Intersection over Union,m Io U)和Kappa系数均有提升,最高分别提升0.40、1.97个百分点和0.012 2。在不改变CNN-ISS核心模型条件下,通过该研究的瓦片边缘效应消除后处理方案,可有效提升遥感影像分类精度,尤其针对复杂异构体和线状地物精度提升效果更好。

文章来源:《遥感学报》 网址: http://www.ygxbzz.cn/qikandaodu/2021/0501/625.html



上一篇:无人机遥感与的红树林物种分类
下一篇:面向对象与卷积神经网络模型的影像作物分类

遥感学报投稿 | 遥感学报编辑部| 遥感学报版面费 | 遥感学报论文发表 | 遥感学报最新目录
Copyright © 2018 《遥感学报》杂志社 版权所有
投稿电话: 投稿邮箱: