- · 《遥感学报》栏目设置[09/01]
- · 《遥感学报》数据库收录[09/01]
- · 《遥感学报》投稿方式[09/01]
- · 《遥感学报》征稿要求[09/01]
- · 《遥感学报》刊物宗旨[09/01]
来稿应自觉遵守国家有关著作权法律法规,不得侵犯他人版权或其他权利,如果出现问题作者文责自负,而且本刊将依法追究侵权行为给本刊造成的损失责任。本刊对录用稿有修改、删节权。经本刊通知进行修改的稿件或被采用的稿件,作者必须保证本刊的独立发表权。 一、投稿方式: 1、 请从 我刊官网 直接投稿 。 2、 请 从我编辑部编辑的推广链接进入我刊投审稿系统进行投稿。 二、稿件著作权: 1、 投稿人保证其向我刊所投之作品是其本人或与他人合作创作之成果,或对所投作品拥有合法的著作权,无第三人对其作品提出可成立之权利主张。 2、 投稿人保证向我刊所投之稿件,尚未在任何媒体上发表。 3、 投稿人保证其作品不含有违反宪法、法律及损害社会公共利益之内容。 4、 投稿人向我刊所投之作品不得同时向第三方投送,即不允许一稿多投。 5、 投稿人授予我刊享有作品专有使用权的方式包括但不限于:通过网络向公众传播、复制、摘编、表演、播放、展览、发行、摄制电影、电视、录像制品、录制录音制品、制作数字化制品、改编、翻译、注释、编辑,以及出版、许可其他媒体、网站及单位转载、摘编、播放、录制、翻译、注释、编辑、改编、摄制。 6、 第5条所述之网络是指通过我刊官网。 7、 投稿人委托我刊声明,未经我方许可,任何网站、媒体、组织不得转载、摘编其作品。
无人机遥感与的红树林物种分类
作者:网站采编关键词:
摘要:无人机遥感数据会衍生大量的光谱、纹理与结构特征,如何提取优势特征是提高红树林物种分类效率和精度的关键问题。针对深圳福田红树林自然保护区缓冲区获取的无人机高光谱影像和
无人机遥感数据会衍生大量的光谱、纹理与结构特征,如何提取优势特征是提高红树林物种分类效率和精度的关键问题。针对深圳福田红树林自然保护区缓冲区获取的无人机高光谱影像和Li DAR点云数据,本研究旨在利用极端梯度提升算法(XGBoost)的"特征重要性"属性筛选出适合红树林物种分类的8类优势特征:基于无人机高光谱影像的单一特征(光谱波段、植被指数和纹理特征:F1—F3)及其融合特征(F4)、基于Li DAR点云的单一特征(高度和强度特征:F5和F6)及其融合特征(F7)、高光谱影像与Li DAR点云的融合特征(F8);基于以上优势特征构建8个XGBoost分类模型。结果表明:综合物种分类精度及其制图结果,基于F8特征的模型分类性能最佳(总体精度为96.41%,莫兰指数为0.5520);基于单一数据源融合特征(总体精度,F4:96.74%;F7:90.64%)的分类性能优于基于单一特征(总体精度,F1—F3:90.31%、92.20%和91.96%;F5和F6:87.66%和81.99%);基于融合特征(F4、F7和F8)和纹理特征(F3)分类图的莫兰指数比基于单一特征(F1、F2、F5和F6)的更大。本文论证了无人机遥感数据和XGBoost方法在基于像元的红树林物种精准分类上具备可行性,可为红树林生态系统健康、保护与恢复的立体监测提供科学依据和技术支撑。
文章来源:《遥感学报》 网址: http://www.ygxbzz.cn/qikandaodu/2021/0421/612.html