投稿指南
来稿应自觉遵守国家有关著作权法律法规,不得侵犯他人版权或其他权利,如果出现问题作者文责自负,而且本刊将依法追究侵权行为给本刊造成的损失责任。本刊对录用稿有修改、删节权。经本刊通知进行修改的稿件或被采用的稿件,作者必须保证本刊的独立发表权。 一、投稿方式: 1、 请从 我刊官网 直接投稿 。 2、 请 从我编辑部编辑的推广链接进入我刊投审稿系统进行投稿。 二、稿件著作权: 1、 投稿人保证其向我刊所投之作品是其本人或与他人合作创作之成果,或对所投作品拥有合法的著作权,无第三人对其作品提出可成立之权利主张。 2、 投稿人保证向我刊所投之稿件,尚未在任何媒体上发表。 3、 投稿人保证其作品不含有违反宪法、法律及损害社会公共利益之内容。 4、 投稿人向我刊所投之作品不得同时向第三方投送,即不允许一稿多投。 5、 投稿人授予我刊享有作品专有使用权的方式包括但不限于:通过网络向公众传播、复制、摘编、表演、播放、展览、发行、摄制电影、电视、录像制品、录制录音制品、制作数字化制品、改编、翻译、注释、编辑,以及出版、许可其他媒体、网站及单位转载、摘编、播放、录制、翻译、注释、编辑、改编、摄制。 6、 第5条所述之网络是指通过我刊官网。 7、 投稿人委托我刊声明,未经我方许可,任何网站、媒体、组织不得转载、摘编其作品。

无人机多光谱遥感反演不同深度土壤盐分

来源:遥感学报 【在线投稿】 栏目:期刊导读 时间:2021-02-16
作者:网站采编
关键词:
摘要:快速、精准获取作物覆盖下的土壤盐分信息,可以提高区域土壤盐渍化治理的有效性。该研究在内蒙古河套灌区沙壕渠灌域内试验地获取无人机多光谱遥感图像数据,并同步采集不同深度

快速、精准获取作物覆盖下的土壤盐分信息,可以提高区域土壤盐渍化治理的有效性。该研究在内蒙古河套灌区沙壕渠灌域内试验地获取无人机多光谱遥感图像数据,并同步采集不同深度的土壤盐分数据。通过遥感图像数据提取光谱反射率并计算传统光谱指数,在此基础上引入红边波段建立新的光谱指数,同时使用Elastic-net算法(ENET)对光谱变量进行筛选,并将筛选后的光谱变量分为原始光谱变量组和改进光谱变量组;运用BP神经网络(BackPropagation Neural Networks,BPNN)、支持向量机(Support Vector Machine,SVM)和极限学习机(Extreme Learning Machine,ELM)3种机器学习方法,构建作物覆盖下不同土壤深度的土壤盐分反演模型,并基于最佳反演模型绘制试验区不同深度土壤盐分反演图。结果表明,使用ENET变量选择方法可以有效筛选出最优光谱变量,且基于改进光谱变量组构建的反演模型精度均高于原始光谱变量组;ELM模型反演效果优于SVM模型和BPNN模型,其验证集的决定系数为0.783,均方根误差为0.141,一致性相关系数为0.875;研究区域内,作物覆盖下的土壤盐分最佳反演深度为10~20 cm;在不同土壤深度下,基于改进光谱变量组构建的最佳反演模型绘制的土壤盐分反演图可以较为真实地反映试验区内的盐渍化程度,这说明引入红边波段构建光谱指数可以用于土壤盐分的反演。该研究为无人机多光谱遥感监测农田土壤盐渍化以及农田盐渍化治理提供了一种新途径。

文章来源:《遥感学报》 网址: http://www.ygxbzz.cn/qikandaodu/2021/0216/506.html



上一篇:基于改进Yolo v3算法的遥感建筑物检测研究
下一篇:基于高分的矿山生态环境调查与恢复治理应用研

遥感学报投稿 | 遥感学报编辑部| 遥感学报版面费 | 遥感学报论文发表 | 遥感学报最新目录
Copyright © 2018 《遥感学报》杂志社 版权所有
投稿电话: 投稿邮箱: